

2016 IERE – CLP-RI Hong Kong Workshop Smart Cities A Convergence of People, Technologies and Big Data

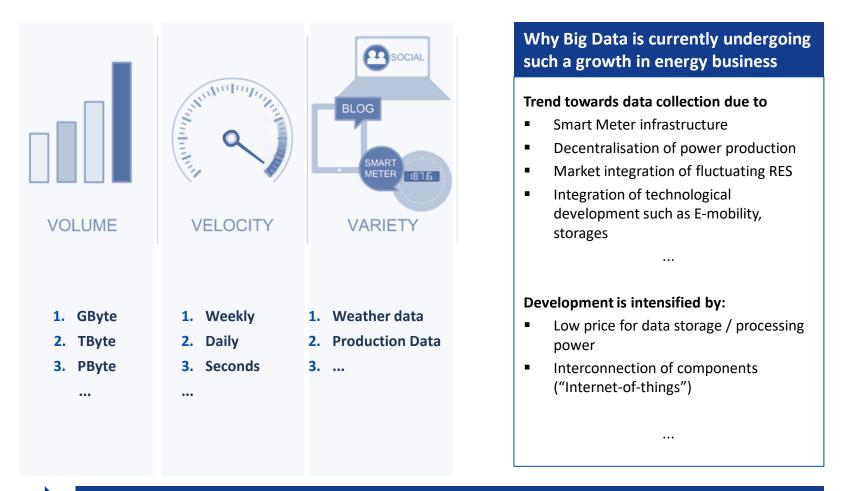
Non Intrusive Load Monitoring

innogy SE · Friedrich Schulte · 23 November 2016

Big Data in urban environments

Non Intrusive Load Monitoring (NILM¹⁾)

innogy's approach to NILM



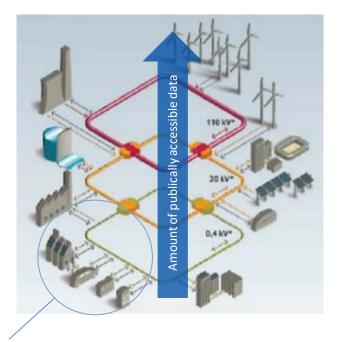
¹ also known as NIALM (Non Intrusive Appliance Load Monitoring)

"Big Data" in energy supply is quickly gaining momentum

Volume, velocity and variety are key characteristics of Big Data

Big Data is on the rise especially in urban environments

Big cities generate "Big Data" originating from diverse sources



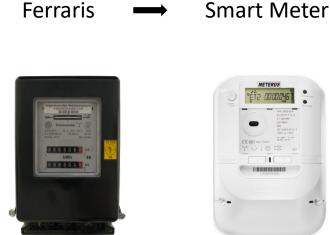
High "data" density due to growing number of

- Loads
- Consumers/ prosumers
- Decentralised generation
- Grid assets
- IT equipment
- Data links
- Supply systems
- Public and individual transport systems
 - Ideal environment to implement data driven energy applications
 - 2 High complexity but still limited availability of data
 - Considerable potential for new business models providing value streams for energy companies and other players


For many applications gaining access to the data is a key challenge

Example¹⁾

Even though local production or consumption data is already generated, access to it is highly limited. Less constraints, e.g. transparency of neighbouring profiles, could be a boost for decentralised market places.



acquired
aggregated
stored and
transferred

so it can be used in appropriate applications/services also operated by 3rd parties?

Technological evolution is obvious in many areas e.g. metering

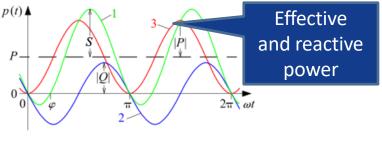
+

- Proven long-life hardware
- Not appropriate for more sophisticated tariffs (e.g. load dependent)
- Need for on-site measurements

- + Small and light
- weighted Electronic data interface (incl. remote access)
- Modularity
- Security concerns by customers

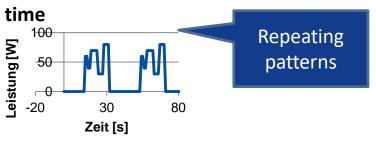
Commercial off-the-shelf hardware

- High installation effort
- Need for synch. of multiple source measurements


One metering

- point only
- Easy retrofit possible
- Feasibility within industrial environment still to be proven

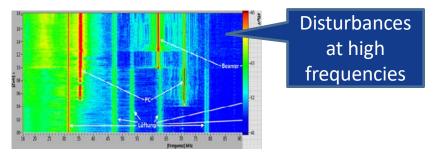
Non Intrusive Load Monitoring is already existent – all solutions share the concept of central metering innogy


Primary difference is the way technical parameters are processed in order to perform "device fingerprinting"

Electric consumption

(Source: Wikipedia)

Macroscopic variation in


(Source: Fraunhofer IMS)

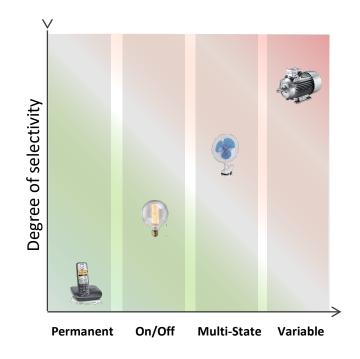
Real part of current [A] 1.5 Harmonic components 0.5 Ceiling lamp Floor lamp Monitor Harmonic Order

Harmonic Signature

(Source: Fraunhofer IMS)

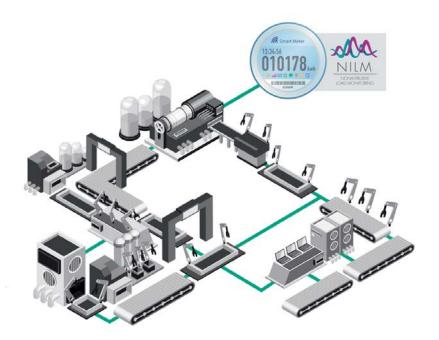
Emitted interference

(Source: Fraunhofer IMS)


Commercial products primarily target private households and still deal with major limitations

NILM Market Players

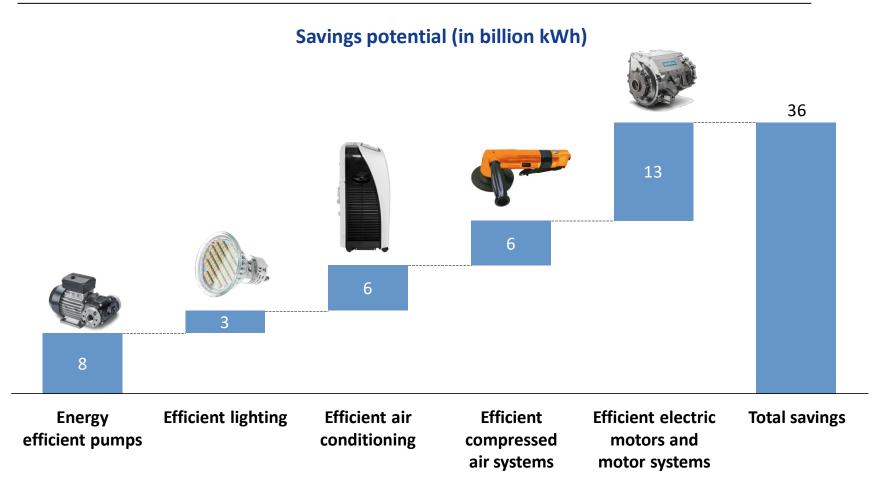
Detection rate strongly varies according to type of appliance



Type of Appliance

Future NILM systems will be characterised by highly improved accuracy and plug&play capability

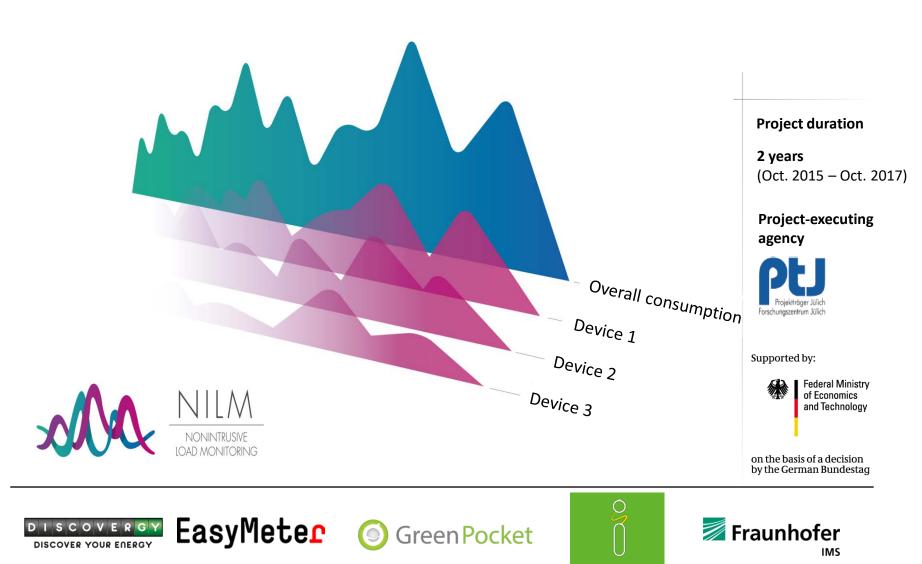
To get the max out of NILM it can be complemented by energy consulting


Major characteristics of an ideal NILM system

- Easy to integrate into electrical installation or already part of Smart Meter
- High accuracy for all types of devices
- Operation in industrial environment possible
- Accessible from local/remote work places (also by 3rd parties)
- Affordable

NILM has the potential to become a key component for the purpose of energy measurement and efficiency

Just within industry there is a significant potential to save electricity


Within the 5 most promising areas, savings amount to 36 billion kWh

¹ According to study "Energieeffizienz: Potenziale, volkswirtschaftliche Effekte und innovative Handlungs- und Förderfelder für die Nationale Klimaschutzinitiative" (ifeu, Fraunhofer ISI et al.; scope Germany)

A NILM project has been launched to exploit the full potential of this technology

innogy

innogy SE, R&D, Page 11

A NILM project has been launched to exploit the full potential of this technology

Objective	Competences of other partners	Role of innogy
 Identify appropriate machinery within SME and industry for the purpose of energy efficiency 	 Discovergy GmbH - Supplier of intelligent Smart Meter solutions and country wide metering-point operator 	 Interface to SME and industrial customers Develop comprehensive requirements analyses
 Based on practical experience develop a highly reliable NILM system 	 EasyMeter GmbH - Development and production of future-oriented modular metering solutions 	 Coordinate measurement campaign involving up to 15 customers
 Further improve accuracy in comparison to already existing NILM solutions 	 Fraunhofer IMS (Leitung) - Research, development and 	Assist in energy consulting to exploit full savings potential
 Create intuitive user interface that can be accessed from remote 	 pilot manufacturing of microelectronic solutions Anlage GreenPocket GmbH - 	Age 2 Gefördert durch: Bundesministerium für Wirtschaft und Energie
destinations LOAD MONITORING	Software specialist for IoT and Smart Energy solutions	aufgrund eines Beschlusses des Deutschen Bundestages
DISCOVERGY EasyMete	G Green Pocket	Fraunhofer

DISCOVER YOUR ENERGY

IMS

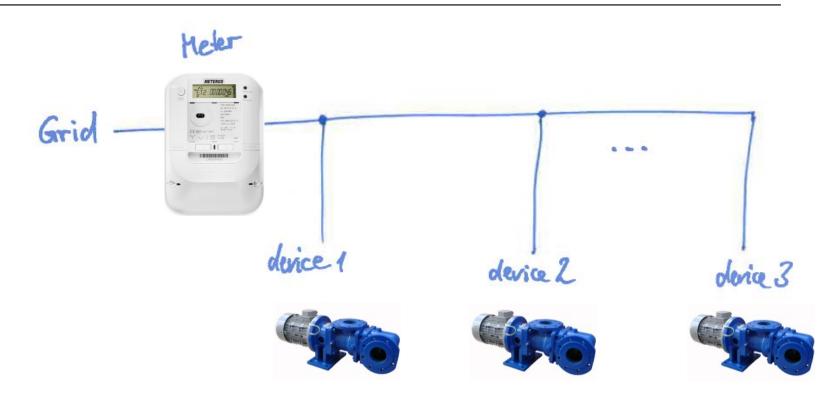
innogy

Involving Customers at an early stage provides valuable insights to define desired product features

Field tests are also vital to practically validate NILM in industrial environments¹⁾

¹ A practical challenge could be to cope with multiple devices of the same type, electromagnetic interference, high currents etc.

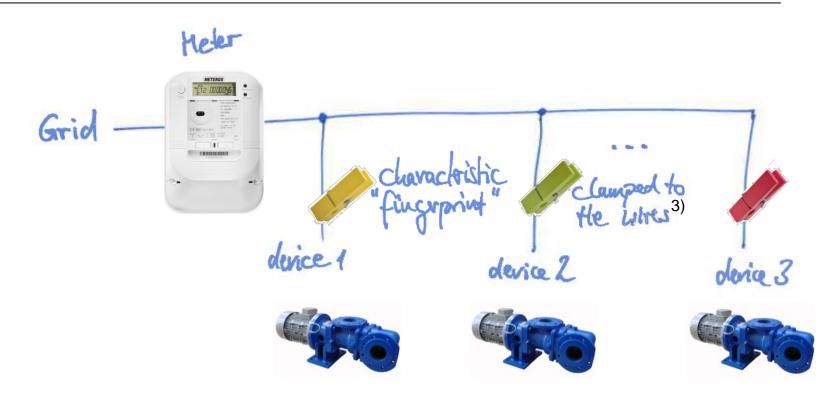
Involving Customers at an early stage provides valuable insights to define desired product features


Field tests are also vital to practically validate NILM in industrial environments¹⁾

¹ A practical challenge could be to cope with multiple devices of the same type, electromagnetic interference, high currents etc.

Accuracy of Non Intrusive Load Monitoring can be further increased by technical measures

Subject of a recent patent application is signal coupling which allows for device identification even in the case of variability¹⁾ or similarity²⁾


¹ variable loads such as motors are operated

² devices with similar fingerprints (e.g. devices of the same type) are operated

innogy

Accuracy of Non Intrusive Load Monitoring can be further increased by technical measures

Subject of a recent patent application is signal coupling which allows for device identification even in the case of variability¹⁾ or similarity²⁾

¹ variable loads such as motors are operated

² devices with similar fingerprints (e.g. devices of the same type) are operated

³ both active and passive realisation possible (e.g. composed of electromagnetic field affecting coil combined with characteristic load)

innogy

Thank you for your attention

innogy

Gunnar Hoffmann Project Lead NILM

T +49 201 12-15464 Gunnar.Hoffmann@innogy.com

Friedrich Schulte Head of Technology/ R&D Strategy

T +49 201 12-15460 Friedrich.Schulte@innogy.com

T +49 201 12-44826 Munib.Amin@innogy.com

Denise Wilms

T +49 201 12-44635 Denise.Wilms@innogy.com

Thorsten Miltkau

T +49 201 12-15466 Thorsten.Miltkau@innogy.com

Max Voss

T +49 201 12-15469 Max.Voss@innogy.com